

Email: gs@symphotony.com Web: https://www.symphotony.com

LN - Lithium Niobate (LiNbO₃)

Introduction

Lithium Niobate (LiNbO $_3$ or LN) is widely used as frequency doublers for wavelength > 1 μ m, optical parametric oscillators (OPOs) pumped at 1064 nm as well as quasi-phase-matched (QPM) devices. Additionally due to its large Electro-Optic (E-O) and Acousto-Optic (A-O) coefficients, LiNbO $_3$ crystal is the most commonly used material for Pockel cells, Q-switches and phase modulators, waveguide substrates, and surface acoustic wave (SAW) wafers, etc. CASTECH can provide LiNO $_3$ crystals with high quality and large size for all these applications.

CASTECH provides

- 50,000 to 100,000 pcs/month of LiNbO₃ wedges used for fiber optical isolators and circulators
- Strict quality control
- Technical support
- Fast delivery
- Competitive price

Basic Properties

Table 1. Chemical and Physical Properties

Crystal Structure	Trigonal, Space group R3c, Point group 3m
Lattice Parameter	a = 5.148 Å, c = 13.863 Å
Melting Point	1253℃
Curie Temperature	1140°C
Mohs Hardness	5 Mohs
Density	4.64 g/cm ³
Elastic Stiffness Coefficients	$C_{11}^{e} = 2.33 (\times 10^{11} \text{N/m}^2)$ $C_{33}^{E} = 2.77 (\times 10^{11} \text{N/m}^2)$

Table 2. Optical and Nonlinear Optical Properties

Transparency Range	420-5200 nm
Optical Homogeneity	\sim 5 ×10 ⁻⁵ /cm
Refractive Indices	$n_e = 2.146, n_o = 2.220 @1300 \text{ nm} n_e = 2.156, n_o = 2.232 @1064 \text{ nm} n_e = 2.203, n_o = 2.286 @632.8 \text{ nm}$
NLO Coefficients	$d_{33} = 86 \times d_{36} (KDP) = 37.84 \text{ pm/V}$ $d_{31} = 11.6 \times d_{36} (KDP) = 5.10 \text{ pm/V}$ $d_{22} = 5.6 \times d_{36} (KDP) = 2.46 \text{ pm/V}$
Effective NLO Coefficients	$d_{eff}(I) = d_{31} \sin\theta - d_{22} \cos\theta \sin 3\Phi$ $d_{eff}(II) = d_{22} \cos^2\theta \cos 3\Phi$
Sellmeier Equations (λ in μm)	$\begin{array}{l} {n_{_{0}}}^{2}{=}4.9048+0.11768/(\lambda^{2}{}0.04750){}0.027169\lambda^{2} \\ {n_{_{e}}}^{2}{=}4.5820+0.099169/(\lambda^{2}{}0.04443){}0.02195\lambda^{2} \end{array}$
Damage Threshold	100 MW/cm ² (10 ns, 1064 nm)

NLO Crystals

Table 3. Thermal and Electrical Properties of LiNbO₃

Thermal Conductivity	38 W/m/K @25 °C
Thermal Expansion Coefficients (at 25°C)	$//a, 2.0 \times 10^{-6}/K$ $//c, 2.2 \times 10^{-6}/K$
Resistivity	2×10 ⁻⁶ Ω·cm @200 °C
Dielectric Constants	$\varepsilon_{31}^{S}/\varepsilon_{0} = 43, \varepsilon_{11}^{T}/\varepsilon_{0} = 78$ $\varepsilon_{33}^{S}/\varepsilon_{0} = 28, \varepsilon_{33}^{T}/\varepsilon_{0} = 32$
Piezoelectric Strain Constant	$D_{22} = 2.04 \times 10^{-11} \text{C/N}$ $D_{33} = 19.22 \times 10^{-11} \text{C/N}$
Electro-Optic Coefficients	$\gamma_{33}^{T} = 32 \text{ pm/V}, \gamma_{33}^{S} = 31 \text{ pm/V}, $ $\gamma_{31}^{T} = 10 \text{ pm/V}, \gamma_{31}^{S} = 8.6 \text{ pm/V}, $ $\gamma_{22}^{T} = 6.8 \text{ pm/V}, \gamma_{32}^{S} = 3.4 \text{ pm/V}$
Half-Wave Voltage, DC Electrical field // z, light \perp z; Electrical field // x or y, light // z;	3.03 KV 4.02 KV

Table 4. Specifications

Dimension Tolerance	$(W \pm 0.1 \text{ mm}) \times (H \pm 0.1 \text{mm}) \times (L \pm 0.2 \text{mm})$
Clear Aperture	Central 90% of the diameter
Surface Quality (Scratch/Dig)	20/10 to MIL-PRF-13830B
Flatness	λ/8 @633 nm
Transmitted Wavefront Distortion	≦λ/4 @633 nm
Parallelism	20 arc sec
Perpendicularity	≤15 arc min
Angle Tolerance	≦±0.5°
Quality Warranty Period	One year under proper use

AR-coatings

CASTECH provides the following AR-coatings:

- Dual Band AR-coating (DBAR) at 1064/532 nm on both surface, with low reflectance (R<0.2% @1064 nm and R<0.5% @532 nm)
- AR-coating and gold/chrome plated on side faces for E-O applications
- Other coatings are available upon request